« Back to course list

Naturally Fractured Reservoir Modelling and Simulation (RES61)

    Description

    This course addresses the key concepts and challenges encountered when modelling simulating naturally fractured reservoirs and will provide practical guidelines for creating meaningful reservoir simulation models.

    Course Level: Advanced / Specialised
    Instructor: Sebastian Geiger

    Designed for you, if you are...

    • An experienced reservoir engineer working on naturally fractured reservoirs, wishing to refine your expertise in modelling and simulating these complex reservoirs

    How we build your confidence

    • By using case studies, you will review the challenges encountered when producing hydrocarbons from naturally fractured reservoirs
    • Modern reservoir modelling approaches for naturally fractured reservoirs will be discussed (not specific to certain software packages)
    • You will learn how to quantify the fundamental processes that drive fluid flow in naturally fractured formations (incl. simple exercises)
    • You will explore the concepts available in modern reservoir simulation packages and discuss their advantages and disadvantages when simulating primary, secondary and tertiary recovery processes from naturally fractured reservoirs
    • You will understand why and how advanced history-matching workflows can help to provide better production forecasts for naturally fractured reservoirs

    The benefits from attending

    By the end of the course you will feel confident in your understanding of:

    • State-of-the-art naturally fractured reservoir modelling
    • Creating and upscaling fracture network models
    • The physics of multiphase flow in naturally fractured formations
    • Running dual-porosity and dual-permeability models
    • Using assisted history matching techniques to forecast future production

    Topics

    • Introduction to naturally fractured reservoirs and their performance
    • Fracture network modelling and upscaling
    • Principles of fluid flow in fractured formations
    • Reservoir simulation using dual-porosity and dual-permeability models
    • EOR for naturally fractured reservoirs
    • Assisted history matching for naturally fractured reservoirs


    Enquiry

    Name:
    E-Mail:
    Company:

    Message:
    Newsletter:

    HOT Engineering GmbH

    Parkstrasse 6
    8700 Leoben, Austria

    HOT Engineering Vienna Office

    Herrengasse 1-3, Floor 2
    1010 Vienna, Austria
    Tel.: +43 3842 43053-0
    Fax: +43 3842 43053-1
    E-Mail: hot@hoteng.com

    HOT Reservoir Solutions GmbH HOT Microfluidics GmbH

    Am Stollen 19
    38640 Goslar, Germany

    Tel.: +49 151 42440 739
    Fax: +43 3842 430 53-1
    E-Mail: hotrs@reservoirsolutions.com
    E-Mail: microfluidics@hoteng.com

    HOT Middle East

    138 Fatimah Bint Mubarak Street
    Al Yasat Tower, P.O. Box: 97
    Abu Dhabi, UAE

    Tel.: +971 2 672 0730
    Fax: +971 2 674 2422
    E-Mail: me@hoteng.com

    HOT Engineering Libyan Branch

    Essyahia City
    Tripoli, Libya

    E-Mail: libya@hoteng.com

    HOT Engineering GmbH   Tel: +43 3842 43 0 53-0   Fax +43 3842 43 0 53-1   hot@hoteng.com